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Figure 1. Overview. A. We present Patch-ioner, a unified zero-shot captioning model based on language-aligned patch representations.
We train a text decoder to generate captions from dense representations produced by a Vision Transformer backbone without requiring any
image supervision. B. By aggregating patch-level representations from different image regions, Patch-ioner can solve several captioning
tasks with varying spatial granularities. C. We achieve state-of-the-art or competitive performance on various zero-shot region-level
captioning tasks, including zero-shot trace captioning (in which a mouse trace guides caption control), dense and region-set captioning.

Abstract

We introduce Patch-ioner, a unified zero-shot captioning
model that shifts from an image-centric to a patch-centric
paradigm, enabling caption generation at arbitrary spa-
tial granularity without region-level supervision. Instead
of relying on full-image representations, we treat individ-
ual patches as atomic captioning units and aggregate them
to describe arbitrary regions, from single patches to non-
contiguous areas and entire images. Leveraging language-
aligned dense visual representations, we provide a flexible
framework for solving various captioning tasks in a zero-
shot manner. Experiments demonstrate state-of-the-art per-
formance in zero-shot dense, region-set, and a newly intro-
duced trace captioning task, highlighting the effectiveness
of patch-wise semantic representations for scalable caption
generation. Website at paciosoft.com/Patch-ioner/.

1. Introduction

Image captioning is one of the most representative tasks
in vision-language understanding and reached incredible
accuracy thanks to the availability of pre-trained vision-
language backbones and large paired image-text datasets. In
its basic formulation, a captioning model takes a full image
in input and autonomously decides which elements must be
described and up to which degree. To enable user guid-
ance and produce more targeted descriptions, some previous
works proposed region-level captioning methods [7, 17],
which take as an additional input a spatial indication — e.g.,
bounding boxes — specifying which image regions have to
be described and, possibly, in which order.

These region-level captioning methods require an in-
credible amount of manually crafted data to fully supervise
the model. Indeed, each sequence or set of bounding boxes
for a given image should correspond to a manually written
ground-truth caption describing those objects. Obviously,
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this fully-supervised solution does not scale properly.
In this paper, we propose a perspective shift that enables

us to perform region-level captioning with arbitrary spatial
granularity — from a single image patch up to the entire
image — in a zero-shot fashion, i.e., without relying on a
region-annotated dataset. Specifically, instead of relying on
the idea that the subject of a captioning method is the image
— then potentially conditioned on a set of sub-regions —
we instead build on two straightforward yet powerful ideas:
i) the simplest element that we could caption is a patch, the
atomic element of an image representation in modern archi-
tectures based on vision transformers [10], and ii) we can
easily aggregate multiple patches to produce descriptions
for arbitrarily large — and also potentially not contiguous
— image regions. We call the model implementing these
ideas Patch-ioner, a zero-shot captioner able to provide a
natural language description for single image patches and
with the ability to generate a caption for arbitrary aggre-
gation of patches. Our model offers maximum flexibility
in zero-shot captioning tasks and can effortlessly generate
captions for various aggregations of image patches, rang-
ing from an individual patch to larger image regions, up to
providing a caption for the entire image.

Despite the powerful perspective change that defines the
patch as the new captioning unit, the problem is now entan-
gled in a simple yet critical question: how can we craft a
model able to provide patch-level captions without relying
on any direct patch-level ground truth supervision?

The astonishing abilities of large pre-trained vision-
language foundation models like CLIP [16, 23, 40] have
permitted, in the last years, the solving of many down-
stream tasks in zero-shot or even training-free configura-
tions. In particular, contrastively learned vision-language
representations enabled impressive results in zero-shot set-
tings in image classification [40, 50], open-vocabulary de-
tection [30, 53] and segmentation [14, 26], or text-image
retrieval [20]. Image captioning, however, cannot directly
employ CLIP machinery at inference time to generate text,
given that CLIP is inherently a discriminative — and not
a generative — approach. Only recently, image caption-
ing models became zero-shot by decoupling image encod-
ing — where pre-trained discriminative models like CLIP
are used to create proper image and text representations —
from the actual generative module. This is the case for mod-
els like [15, 24, 33], which i) employ CLIP to leverage a
shared vision-language semantic space, and ii) train a text
decoder on solely text samples to recover the text back from
the CLIP textual feature. This requires nothing more than
a pre-trained contrastive model and a large set of sole text
samples to craft a powerful captioner.

Our model follows the same core idea. However, unlike
existing zero-shot captioning models, we design it to per-
form textual decoding on the image patch tokens in output

from the underlying vision transformer rather than on the
global CLS image representation. Although it may seem
an innocuous and straightforward adaptation, the success of
this method is bounded by the ability of CLIP to encode
fine-grained information in its image patches. Therefore,
in this paper, we complete the puzzle by adding two crit-
ical components: i) a pre-trained contrastive model which
— unlike CLIP — is able to create meaningful patch repre-
sentations, and ii) ad-hoc aggregation functions that merge
the different patch embeddings so that the resulting caption
can describe the union of the aggregated patches, without
having to re-train the textual decoder.

Thanks to the Patch-ioner and the simple introduced
patch-wise aggregation functions, we are able to reach state-
of-the-art or comparable results in many zero-shot versions
of known captioning task variants — dense captioning [17],
region-set captioning [7], as well as standard image cap-
tioning [44] — and in our novel introduced zero-shot trace
captioning task, which requires to generate a caption for a
region within an image specified by a mouse trace.

To summarize, we propose the following contributions:
• We shift perspective for solving an ample set of cap-

tioning task variants, transitioning from the widely used
image-to-caption vision to the patch-to-caption approach.

• We introduce the Patch-ioner, the first model able to gen-
erate captions for single image patches and arbitrary ag-
gregations of them without employing full supervision.

• We probe the Patch-ioner performance on four different
image captioning variants, showing the effectiveness of
the proposed method despite its overall simplicity.

2. Related Work
Language-aligned Dense Image Representations are
crucial for our goal of captioning at patch level. Vision-
language models (VLM) like CLIP [40] introduced a pow-
erful approach to learning global modality representations
in a shared space via contrastive learning, paving the
way to solve several downstream tasks, including caption-
ing [8, 31]. However, in zero-shot settings, CLIP-like rep-
resentations are known to struggle with dense tasks due to
misalignment between local visual patches and fine-grained
semantics [4, 41, 52]. On the other hand, visual-only self-
supervised models (SSM) like DINO [5, 35] excel in local
semantic modeling but lack a bridge with language. Re-
cent works like SILC [32] and dino.txt [18] attempt to get
the best of both worlds by combining DINO- and CLIP-
like training objectives, aiming to obtain language-aligned
dense representations. Other methods instead exploit al-
ready existing VLMs and SSMs to get the same properties
with minimal or no training: Talk2DINO [3] connects lan-
guage to the DINOv2 space by mapping CLIP textual rep-
resentations to DINOv2 patches. ProxyCLIP [22] instead
leverages DINO’s attention maps to improve the local prop-
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erties of the CLIP visual embeddings of patches.

Zero-shot Image Captioning methods rely mostly on
global CLIP representations to guide text generation. Early-
guided decoding methods take CLIP visual features as input
and introduce adaptation techniques to reduce the visual-
textual modality gap [27]. DeCap [24] projects CLIP vi-
sual features into a more text-aligned space using a memory
of texts as basis, while CapDec [33] and CLOSE [15] in-
ject noise during text-only training to enable decoding also
from the CLIP visual space. ViECap [13] enhances cap-
tions with entity information extracted via CLIP, and Mea-
Cap [49] refines outputs iteratively by incorporating struc-
tured subject-predicate-object knowledge. Late-guided de-
coding methods instead use CLIP as a scoring or optimiza-
tion signal rather than direct input. ZeroCap [44] lever-
ages CLIP gradients to steer the cached context during text
generation, while MAGIC [43] optimizes token selection
based on CLIP similarity scores. However, all the above
approaches rely on global representations, which are not
well-suited for capturing localized semantic details, making
them suboptimal for patch-level or region-level captioning
in zero-shot settings.

Region-level Captioning comprises several tasks in
which models are asked to produce natural language de-
scriptions based on sub-parts of an image. They pose addi-
tional challenges as naively captioning the cropped regions
or feature maps often induces a loss of the global context
of the image and, thus, misinterpretation of the region. For
this reason, zero-shot solutions to this family of problems
are still underexplored. For controllable captioning [7] —
the generation of an image caption controlled by a set or
sequence of regions — and dense captioning [17] — the
localization and captioning of salient regions of an image
— state-of-the-art solutions like CAG-Net [47], GRiT [46],
ControlCap [51], and FlexCap [12] provide good perfor-
mance but need supervision with ground-truth boxes. Be-
low the region-level granularity, we are unaware of existing
efforts, but the Localized Narratives dataset [38] — com-
prising images, timed captions, and timed mouse tracks
— provide the ingredients for evaluating captioning also
at track- or patch-level. We propose a unique framework
to solve captioning at various granularity, from image- to
patch-level, in a zero-shot setting.

3. The Patch-ioner Model
We design our Patch-ioner model to generate captions for
individual patches within an image. To accomplish this,
we first obtain language-aligned patch representations in
a shared image-text latent space using a transformer-based
vision-language model. We then adopt a training-free pro-

jection to transform the patch representation (or an aggre-
gation of multiple ones) to mitigate the image-text modal-
ity gap. Finally, we adopt a text decoder — trained with a
text-only dataset — to generate a caption conditioned on the
transformed patch representation. The entire process does
not rely on image supervision at any stage.

In §3.1, we describe in detail the caption generation pro-
cess for a single image patch, which is schematized in Fig-
ure 2. In §3.2, we show how our model can solve known
region-level and image-level captioning tasks using simple
patch aggregation strategies.

3.1. Patch-level Captioning
Patch Feature Extraction. Let I ∈ RH×W×3 be an im-
age, which is divided into a grid of non-overlapping patches
of size P × P , and (ψv, ψt) a pre-trained vision-language
model comprised of a transformer-based visual encoder ψv
and a textual encoder ψt providing embeddings in a shared
space in RD. We process the image patches and extract a
dense feature map V = ψv(I) ∈ RH

P ×W
P ×D. where each

spatial location in V corresponds to the feature represen-
tation of a specific patch in the image. Our objective is to
generate a caption for the i-th patch, utilizing its feature rep-
resentation vi ∈ RD where i indexes a specific patch in V .
The choice of the vision encoder ψv is crucial, as the qual-
ity of patch representations impacts the semantic alignment
between image regions and textual descriptions.

Modality Gap. Contrastively learned multi-modal spaces
suffer from the modality gap phenomenon [27], where im-
age and text embeddings are not perfectly aligned within
the shared feature space. To mitigate this issue, we adopt
a projection-based decoding mechanism inspired by [24].
Instead of directly using the image patch representation v,
we align it with the text embedding space by computing
a weighted combination of stored text embeddings from a
support memory M = {m1, . . . ,mN}. Formally,

vproj =

N∑
j=1

αjmj with αj =
exp((m⊤

j v)/τ)∑N
k=1 exp((m

⊤
k v)/τ)

,

(1)
where
• mi = ψt(ti) represents the text embedding of a sentence
ti belonging to the support memory M ,

• αi is the weight assigned to each text embedding, deter-
mined by the cosine similarity between the image patch
representation v and each stored text embedding mi, and

• τ is a temperature parameter that controls the sharpness
of the softmax distribution.

This approach ensures that the patch representation is
mapped to a text-aligned embedding. The final projected
vector vproj is the input for the text decoder that generates
the caption. We also test an alternative solution in SM§7.
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Figure 2. Patch-level Captioning. Given an input image, we first extract dense patch-level representations using a vision transformer
backbone. For a selected patch, we apply a projection-based decoding mechanism to align its representation with the text embedding
space, mitigating the modality gap. Finally, the transformed embedding is fed into a text decoder trained on a text-only corpus, generating
a zero-shot caption for the patch.

Zero-shot Text Decoding. We train a text decoder ϕ :
RD → T using a prefix language modeling approach,
where the decoder learns to generate the caption t ∈ T
conditioned on its text embedding extracted from the text
encoder ψT(t). The decoder is trained solely on text data,
using the corresponding text embeddings as prefixes to re-
construct the original sentences. This ensures alignment be-
tween the decoder and the text embedding space without
requiring image supervision during training. At inference,
instead of a text-derived prefix, we use the projected patch
embedding vproj as the prefix input to the decoder to gener-
ate the patch caption t

t = ϕ(vproj) . (2)

This allows the generation of meaningful captions for im-
age patches in a zero-shot manner, leveraging the learned
alignment between patch-level and textual representations.

3.2. Region-level Captioning
Building upon patch-level zero-shot captioning, our method
can generate captions for specific regions within an image.
A region representation is obtained by aggregating the fea-
ture embeddings of its constituent patches employing vari-
ous methodologies that depend on the specific downstream
task. Once the aggregated region representation is obtained,
we plug it into Eq. 1 and Eq. 2 to obtain a caption for that
region. In the following, we detail the specific tasks and
associated aggregation functions.

Image Captioning involves generating a single caption
that describes the entire image. To achieve this, we derive
a global representation by aggregating the feature embed-
dings of all patches within the image. Specifically, given an
image I , we compute its global representation vI as

vI =

HW
P2∑
i=1

wivi, (3)

where vi represents the feature embedding of the i-th patch,
and wi is the weight assigned to each patch’s contribution
to the final representation. The weights wi are chosen em-
ploying the criteria explained in §3.3.

Dense Captioning requires locating salient regions in an
image and generating their descriptions. We focus on the
captioning of already defined boxes, effectively removing
the localization subtask, which can be tackled using addi-
tional region-proposal models. Given a bounding box B,
we define SB as the set of patches that intersect with B. To
obtain the representation vB of the region defined by B, we
aggregate the feature embeddings of the patches in SB

vB =
∑
i∈SB

wivi , (4)

where choices of wi are reported in §3.3.

Region-set Captioning consists of generating a single
caption for multiple regions within an image, where each
region is specified by a distinct bounding box. Given an im-
age I and a set of bounding boxes B = {B1, B2, . . . , BK},
we define SBk

as the set of patches that intersect with the
k-th bounding box in B. To represent the entire set of re-
gions, we aggregate the feature embeddings from all se-
lected patches across all bounding boxes, which results in
a combined region-level representation

vB =
∑

i∈{B1∪···∪BK}

w̃ivi , (5)

where w̃i is the combined and normalized weight of the i-
th patch considering the contribution of all bounding boxes
insisting on that patch:

w̃i =

∑
B∈B

Ji ∈ BKw(B)
i∑

B∈B

∑
j∈B

w
(B)
j

, (6)

4



where w(B)
j is the weight of the j-th patch computed for

the bounding box B as reported in §3.3, and J. . .K is the
indicator function.

Trace Captioning. We also define Trace Captioning as
generating a caption for a region within an image specified
by a mouse trace. This task is particularly useful to obtain
localized descriptions of images. For example, consider the
understanding of image content by visually impaired users;
a trace captioning system can provide not only a description
of the main subjects — as image captioners — but also lo-
calized descriptions within the picture. Specifically, given
an image I and a mouse trace T = {p1, ..., pL}, where L
is the number of points in the trace and each point pi repre-
sents its position within the image, we obtain a representa-
tion of the traced region by aggregating the patch represen-
tations corresponding to the points in T . To achieve this, we
first identify the sequence of patch indexes ST = [i1, ...iL]
that overlap with each trace point and select their corre-
sponding feature representations {vij}Lj=1. We then com-
pute a trace-level representation vT by averaging the fea-
tures of all selected patches

vT =

L∑
j=1

wijvij . (7)

The weights wij are chosen as explained in §3.3.

3.3. Patch Aggregation
In cases where we are not captioning a single patch, we
aggregate the selected patches using reasonable criteria. To
this aim, we test different aggregation functions for merging
the vi in the selected set S of visual patches: a) uniform,
the average box patch representations (i.e., w = 1/|S|);
b) gaussian, for rectangular configurations of contiguous
patches — i.e., either the full image or a bounding box;
we consider a weighted average of patches representations
where central patches weigh more; specifically, we assign
to each patch (a, b) coordinates in a uniform square grid
[−1, 1]2 (i.e., the top-left and bottom-right patches have
(−1,−1) and (1, 1) coordinates, respectively), and weight
of ea

2+b2 in the average, and c) attention, a weighted aver-
age of box patches representations, with patch weights de-
fined as the average attention map of the last layer of ψv.

4. Experiments
We assess the performance of Patch-ioner on the set of cap-
tioning tasks described in §3.2 encompassing a wide spatial
granularity range. From local/fine to global/coarse gran-
ularity, the tasks are trace captioning, dense captioning,
region-set captioning, and image captioning. We evaluate
our model in the zero-shot setting, as it does not require
training with image data.

Metrics. All the datasets used to conduct our evaluation
provide a textual ground-truth caption for each annotation.
Thus, we adopt standard captioning metrics to measure how
close the generated captions are to the ground-truth ones. In
particular, we report BLEU@4 (B) [36], METEOR (M) [2],
ROUGE-L (R) [28], CIDEr (C) [45], SPICE (S) [1] and
RefPAC Score (P) [42]. While the first ones are more re-
lated to the syntactic similarity between annotations and
predictions, the RefPAC Score is a metric that quantifies
the distance between two sentences in a semantic way, in-
dependently of the terms and phrase structure adopted.

Architectural Details. We select Talk2DINO [3] as the
vision-language model underlying our patch feature ex-
traction. Talk2DINO adopts as visual encoder ψv the DI-
NOv2 [34] model with registers [9] and textual encoder
as ψt the CLIP text encoder augmented with a shallow
adapter that maps the space to the DINOv2 one. This
provides language-aligned semantically meaningful patch
embeddings. For the textual decoder ϕ, we chose a pre-
fix GPT2-like decoder-only transformer network with 4 at-
tention heads and 4 layers as in [24]. We trained it with
a learning rate of 10−5 with the collection of captions of
the COCO training set. We adopted the same collection of
500000 texts as memory bank Mand set τ = 0.01 in Eq. 1.

Evaluation Protocol. We compared our model with
available state-of-the-art zero-shot solutions for standard
image captioning. We are not aware of any zero-shot so-
lutions for the other region-level tasks. We adapt one of
the best image captioning solutions, i.e., DeCap [24], as a
strong baseline. We evaluate each task on two datasets —
a COCO-derived dataset and an additional dataset such as
Visual Genome [21] or Flickr30k [48] — to assess the in-
domain and cross-domain performance. Images are fed to
every model without cropping. However, we resize them
such that they induce the same number of patches for all
models. Figure 3 shows qualitative results for each task and
model.

4.1. Trace Captioning
As introduced in §3, we define Trace Captioning as the gen-
eration of a caption for a mouse trace drawn over an image.

Dataset. We exploit Localized Narratives [39] — a
dataset in which annotators vocally described objects in im-
ages while moving the mouse pointer over the described
object. The dataset provides temporal annotated voice tran-
scriptions and mouse traces for the images of many standard
captioning datasets. We took the labeled COCO [6, 29] and
Flickr30K [48] subsets to build the evaluation datasets for
the Trace Captioning task. We split long traces and tran-
scriptions for each image into sentences, keeping the traces
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COCO Flickr30k

Model B M R C S P B M R C S P

DeCap CLS 2.0 9.6 21.5 20.5 8.7 75.3 1.2 7.7 17.7 11.2 5.6 71.0
DeCap Trace 0.9 7.0 17.0 10.9 5.8 75.0 0.4 5.7 14.1 5.9 3.9 73.3
Patch-ioner 2.5 10.7 23.2 27.9 12.6 78.7 1.6 9.3 19.9 18.8 9.6 77.0

Table 1. Trace Captioning results.

temporally located between the start and the end of each
sentence. We discarded noisy sentences – such as the ones
describing image properties (The image is blurred, the im-
age is edited, ...) and rewrote each sentence removing un-
certainties typical of voice descriptions in a more concise
and caption-like style through a few-shots prompted LLM
(LLama 3 [11]). Further information regarding the genera-
tion of the dataset can be found in the supplementary mate-
rials. We use the test sets of COCO (Karpathy splits [19])
and Flickr30k. After annotation cleaning, 51 COCO images
resulted without clean sentences and were discarded.

Compared Models. For Patch-ioner, we use Eq. 7 to ag-
gregate patches underlying a trace. Note that if a patch is
crossed multiple times during a trace, it is weighted more.
We compare and report the performance of two baseline
methods: a) DeCap CLS, in which we use the DeCap ze-
ro-shot captioner (that works on the visual CLS token of
CLIP). This baseline employs the base DeCap model to
generate a global image-wise caption and assigns it to all the
traces of that image; b) DeCap Trace, in which we employ
the pretrained image-wise DeCap model, feeding it with the
patch token aggregations instead of the original CLS.

4.2. Dense Captioning
We assess the performance on dense captioning tasks fol-
lowing the evaluation procedure from [17], omitting the
bounding box proposal and evaluating only the bounding
box captioning task, using ground-truth boxes as input for
the models. In addition to standard caption metrics, for this
task, we also report the mAP as originally defined in [17].

Dataset. We use the Visual Genome (VG) v1.2 [17, 21]
and VG-COCO test splits [25]. The former comprises
5000 images from VG, while the latter contains 2476 im-
ages present in both VG and COCO. Both contain multiple
bounding box annotations per image with descriptions.

Compared Models. We compare with the following
baselines adapted from available zero-shot captioning mod-
els: a) DeCap Crop, in which we apply the DeCap ze-
ro-shot captioner to the cropped region defined by the given
bounding box; b) DeCap CLS, in which we assign to all
boxes of an image the caption of the whole image gener-
ated by DeCap from the global CLS token, and c) DeCap

Box, in which we substitute the input CLS token with the
same aggregation of patch tokens used in our model.

Patch Aggregation. We report only the best-performing
aggregation for Patch-ioner and DeCap Box methods,
that are gaussian and uniform, respectively. However,
we noticed that the choice of different aggregations only
marginally affects performance in both models (see SM§6).

4.3. Region-Set Captioning

Region-set captioning was originally introduced by Cornia
et al. [7], and thus, we follow their evaluation protocol.

Dataset. We use the Flickr30K Entities [37] and the
COCO Entities [7] datasets. Each record comprises an
image, a set of bounding boxes of variable length, and a
ground-truth controlled caption. We evaluate on the test
splits, comprising of images in the Karpathy and Fei-Fei
[19] test splits, that consist of 3569 and 1000 images for
COCO and Flickr30k versions, respectively.

Compared Models. We compare with the following
baselines derived in a similar fashion to the dense caption-
ing ones, which are a) DeCap CLS, in which we predict
the caption of the whole image generated by DeCap from
the global CLS token (in fact, ignoring the region set), and
b) DeCap Set, where we replace the input CLS token with
the same aggregation of patch tokens used in our model.

Patch Aggregation. We proceed similarly to §4.2. Notice
that, in this case, patch weights are computed independently
for each box in the set and summed per patch. Therefore,
a patch underlying two intersecting boxes will weigh more.
Also for this task, we report only the best-performing aggre-
gations (gaussian for Patch-ioner and uniform for DeCap
Set) and refer the reader to SM§6 for further details.

4.4. Image Captioning

We follow the standard evaluation pipeline for zero-shot im-
age captioning, generating captions for the 5000 images in
Karpathy’s COCO test split. We compare with several state-
of-the-art models, that are DeCap [24], CLOSE [15], Zero-
Cap [44], MAGIC [43], ViECap [13] and CapDec [33].

Patch Aggregation. We solve image captioning with our
model by aggregating all patch representations extracted by
the visual backbone. Among the tested aggregation strate-
gies described in §4.2, we report the best-performing one
for Patch-ioner, that is attention.
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Visual Genome (v1.2) VG-COCO

Model mAP M B R C S P mAP M B R C S P

DeCap CLS 0.14 8.48 0.95 15.70 19.11 9.40 73.94 0.15 8.42 0.95 15.73 19.01 9.41 73.82
DeCap Box 0.12 6.01 0.44 13.07 10.69 5.00 74.07 0.12 5.96 0.47 13.17 10.86 4.85 74.02
DeCap Crop 0.18 10.33 1.40 18.44 24.56 11.28 77.76 0.18 10.35 1.39 18.49 24.87 11.35 77.73
Patch-ioner 0.22 10.82 1.43 18.82 32.80 15.48 79.14 0.22 10.89 1.45 18.88 33.19 15.63 79.05

Table 2. Dense Captioning results.

Model COCO Entities Flickr30k Entities

B M R C S P B M R C S P

DeCap Set 3.5 10.6 24.0 41.6 14.1 78.8 1.0 6.1 16.3 12.9 6.4 70.4
DeCap CLS 10.0 19.4 38.3 95.1 26.8 87.4 5.3 12.5 29.1 39.4 15.9 78.8
Patch-ioner 11.6 19.6 39.3 111.6 30.1 87.7 5.0 12.1 28.5 43.5 16.6 78.9

Table 3. Region-Set Captioning results.

Model COCO Flickr30k

B M R C S P B M R C S P

ZeroCap [44] 2.6 11.5 - 14.6 5.5 - - - - - - -
MAGIC [43] 12.9 17.4 39.9 49.3 11.3 - 6.2 12.2 31.3 17.5 5.9 -
CLOSE [15] 22.1 23.7 - 81.2 17.7 - - - - - - -
CapDec [33] 26.4 25.1 51.8 91.8 - - 17.3 18.6 42.7 35.7 - -
ViECap [13] 27.2 24.8 - 92.9 18.2 - 17.4 18.0 - 38.4 11.2 -
DeCap [24] 24.7 25.0 - 91.2 18.7 - 16.3 17.9 - 35.7 11.1 -
DeCap† 23.4 25.1 50.1 87.4 19.1 90.6 15.6 18.8 42.0 40.0 12.5 84.8
Patch-ioner 23.6 23.9 48.5 88.5 18.2 90.2 13.7 17.1 39.5 39.3 11.5 84.2

Table 4. Image Captioning results.

4.5. Results
We report and discuss the results of the compared meth-
ods across the four evaluated captioning tasks, from local to
global granularity. The results are summarized in Tables 1–
4, and qualitative results are visualized in Figure 3.

Fine-grained Tasks. In trace and dense captioning tasks,
which focus on local visual elements, Patch-ioner outper-
forms all baselines across all metrics. For trace caption-
ing (Table 1), we significantly improve over DeCap vari-
ants, confirming the effectiveness of our patch-based ap-
proach for localized descriptions. DeCap CLS obtains
lower scores as the global caption may not capture the spe-
cific content under the trace. Applying DeCap to the trace
patches — as our method — generally provides lower per-
formance due to a lack of semantic local knowledge of the
CLIP backbone underlying DeCap. Similarly, we achieve
substantial gains in all metrics in dense captioning (Table 2).
Applying zero-shot captioning to box crops (DeCap Crop)
produces the strongest baseline, although being the most
computationally expensive, while using the caption gener-
ated from a global CLIP representation (DeCap CLS) or the
patch-aggregated one (DeCap Box) provides lower scores.
We deem existing zero-shot image captioners struggle with

fine-grained descriptions, as their captions tend to overlook
local visual elements. However, focusing solely on cropped
regions disregards the broader scene context, which nega-
tively impacts dense captioning performance. Instead, our
method is able to preserve both local details and contextual
information and requires only a single visual backbone for-
ward pass per image.

Context-aware Tasks. For region-set captioning (Ta-
ble 3) our model excels on COCO Entities and performs
comparably to the best baselines on Flickr30k Entities, with
notable improvements in semantic metrics (CIDEr, SPICE,
RefPAC). Differently from the previous tasks, we notice
the best baseline is the one producing captions for the en-
tire image. This is expected, as the region-set task re-
quires generating a controlled caption of the whole im-
age that focuses on the provided regions. We also note
a slight performance degradation in the cross-domain set-
ting (Flickr30k), probably due to the decoder bias towards
COCO captions. Finally, our method achieves competitive
results in standard image captioning (Table 4) compared to
state-of-the-art zero-shot captioning models, particularly in
the semantic RefPAC Score. The lower scores in syntactic
metrics (e.g., BLEU@4) suggest a divergence from human-
annotated ground-truth captions in phrasing, yet the seman-
tic quality remains high. This demonstrates the potential of
our model to generate meaningful captions without explicit
visual-language training also at the image-level.

5. Conclusions
In this paper, we introduced the Patch-ioner, a novel zero-
shot captioning model that shifts from an image-centric to a
patch-centric approach, enabling caption generation for in-
dividual patches and arbitrary aggregations without region-
level supervision. We rely on the strong spatial awareness
of the DINOv2 network, whose local image patches have
been effectively bridged with the text modality. Thanks to
the disentangled training of the decoder network, this flexi-
ble and scalable method enhances various captioning tasks,
including dense and region-based captioning, as well as our
newly proposed trace captioning.

Despite its simplicity, results show that Patch-ioner can
effectively bridge the gap between local and global under-
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standing in image captioning, providing a unified frame-
work for multi-granularity captioning tasks in a zero-shot
setting.

In the future, we may enforce an image-level captioning
loss to DINO-based contrastively learned representations
to obtain better patch-level features in a weakly-supervised
manner or enhance patch-to-text feature projection to fur-
ther reduce the modality gap, critical in zero-shot scenarios.
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PA
T

C
H

DeCap a cat is sleeping on a cluttered desk. a cat is sleeping on a cluttered desk. a tennis player is playing tennis on the court for a serve. a few people are skiing on a snowy mountain.
DeCap P a cat is sitting on the bed and it’s contents. a cat is sitting at a table with a full laptop . a couple of people are in the middle of a tennis court. a few people are skiing in a snowy mountain.

Ours a plant in a vase sitting on a table. office supplies , pens , toys , and other items on desk. a street light in front of a large building. a cloudy sky is seen in this cloudy day.

T
R

A
C

E

GT Two giraffes, rocks, and a fence. A sky. A flag. People walking on a walkway.
DeCap a giraffe in a zoo with a city in the background. a giraffe in a zoo with a city in the background. a man on a skateboard who is holding onto a skateboard. a park filled with people sitting on benches near trees.

DeCap P there are some people that are in a lot by a tree. there are some people that are out by a lot of trees. there are some people that are in the water with a couple of them. there are several traffic lights out in the wild.
Ours two giraffes standing in a fenced area. a view of a city with a sky in the background. a flag is flying high in the air. a large group of people walking on a sidewalk.

D
E

N
S

E

GT light shining through the trees. bench sitting in the woods. a clock at a train station. black cat sitting on a bench.
DeCap a bench sits in the middle of a wooded area. a bench sits in the middle of a wooded area. a train traveling along the platform of a public train. a woman squatting on a bench with a cat.

DeCap P a bear is in the woods among the trees. there are many trees that are standing in the woods. a train is on the tracks and going by. there is a person that is out on the kitchen.
DeCap C a person in a tree is standing in the wild near trees. a bench sitting in the middle of a wooded area. a black cat is leaning on a black cat. a a close up of a person standing by a person holding a phone.

Ours sun shining through the trees at sunset. a park bench sitting in the middle of a wooded area. a clock on a train station platform above a train. a black cat is sitting on a black bench.

R
E

G
IO

N
-S

E
T

GT an elderly man in a cap sitting on a bench. an old man sitting on a bench with a purse. a man performing a trick near a fire hydrant. a man swinging a baseball bat as another looks on.
DeCap a man sitting on a bench while holding a door. a man sitting on a bench while holding a door. a man on a skateboard doing a trick. a baseball player at bat getting ready to hit the ball.

DeCap P a bathroom has a blue floor and it is very clean. a bathroom has a blue toilet and the walls. there are many cars driving down the street corner. some baseball players are on the field playing baseball.
Ours a man in a hat sitting on a bench. a man sits on a wooden bench with a bag on his back. a fire hydrant on a sidewalk next to a street pole. a baseball player is swinging his bat as a crowd watches.

IM
A

G
E

GT A black cat rubbing against a bottle of wine. A man in a wetsuit rides a wave. A wooden bench sitting on a beach. A wooden table with a plate of cake and coffee.
DeCap a black cat standing next to a bottle of wine glasses a man on a surf board riding a wave in the water a bench sits on the beach next to the ocean a slice of cake on a plate with a cup of cake

ZeroCap a Wine dro Pet Cat. a man surfing in the area 0. a beachfront bench. a sunny cake with tea.
CLOSE a cat sitting on the counter of a green bottle. a man on a surf board riding a wave in the ocean. a wooden bench sitting in the sand near the ocean. and a cake is sitting on a white plate.

Ours a black cat sitting on a chair next to a bottle of wine. a man on a surfboard riding a wave. a bench sitting on the beach next to the ocean. a piece of cake on a plate with a cup of coffee.

Figure 3. Qualitative results. We report four predictions of our model and compare baselines from the finer (top) to the coarser (bottom)
task. For trace captioning examples, the trace time is color-coded from start (red) to end (yellow). DeCap = DeCap applied on the whole
image. DeCap P = DeCap applied on the same aggregation of patches used by our method. DeCap C = DeCap applied on cropped box.
ZeroCap = ZeroCap [44] applied to the whole image. CLOSE = CLOSE [15] applied to the whole image. GT = ground-truth caption.
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One Patch to Caption Them All: A Unified Zero-Shot Captioning Model

Supplementary Material

6. Additional Results: Weighting Strategies,
Input Resolution, Text Collection

We tested several patch weighting strategies (described in
§3.3) and input resolutions for our model and the DeCap-
based baselines.

For Patch-ioner, we followed Talk2DINO [3] and used
an input image resolution of 518x518, obtaining 37 14x14
patches per side. The original DeCap implementation [24]
uses the CLIP B/16 backbone with 224x224 input images
with 14 patches per side. We also tested DeCap with a
592x592 input image size in order to obtain the same num-
ber of patches of our model (37 per side) and DeCap with
the B/32 backbone – the original configuration realeased by
[24] –, which results in 7 patches per side.

While the main paper reports only the best configura-
tion per task and model, in this section, we report and dis-
cuss the results of all the tested configurations. We perform
these tests on the COCO-derived datasets and on VG v1.2
for dense captioning. We highlight the rows in the tables
corresponding to the configurations that have been reported
in the main paper.

Trace Captioning. Table 5 reports trace captioning re-
sults from which we conclude the simple average of trace
patches provides the best performance. For this task, we
did not apply the gaussian weighting scheme, as we could
not clearly identify rectangular regions from the sparse dis-
continuous traces.

Dense Captioning. Table 6 reports the results of the
dense captioning task. For Patch-ioner, changing the
weighting strategy does not cause significant performance
changes. We observe that DeCap applied to patches is more
effective when the number of patches is higher. Indeed, De-
Cap@592 CLIP B16 — the one having the same number
of patches per image as our method — achieves the highest
semantic score (in terms of RefPAC-S) among the baselines
applied to patches. The best configuration for DeCap is to
apply it to CLS tokens of box crops (DeCap@224 Crop).
The gap between the CLIP B/16 and B/32 versions is negli-
gible.

Region-Set Captioning. Tables 7 and 8 show the results
in the region-set captioning task on COCO and Flickr30k,
respectively. As already discussed in §4, the baseline meth-
ods applied to patches achieve lower scores compared to the
one applied to the global CLS token. This is due to the more

global nature of the task, which requires the model to pro-
duce a caption for the whole image while focusing on cer-
tain regions. Examining the results of our Patch-ioner, we
notice a reversal in the ranking of configurations between
the two datasets. Also, in this task, the weighting strategy
only marginally affects performance.

Image Captioning. In Table 9, we report the results of
standard zero-shot image captioning. In addition to the al-
ready described weighting schemes, we test two additional
configurations for Patch-ioner that are a) central patch,
where the decoding is applied to the central patch of the
image, and b) CLS, where we decode the CLS token pro-
vided by the Talk2DINO visual backbone. We can observe
that the most effective strategy for the image captioning task
is attention. This is coherent with results from [3], where
they suggest the attention-weighted patch means to use
Talk2DINO for global tasks such as image-text retrieval.

Memory Bank. Considering that we tackle the modality
gap through a projection based on a collection of texts, we
tested how much the performance is influenced by the se-
lection of the texts in the memory bank. In Table 9, we also
report the results obtained by two of the best configurations
of our method when in its memory bank, there are also the
ground-truth captions from the test set (rows marked with
GT Memory). We can observe only a slight performance
improvement obtained through this tweak.

7. Modality Gap: Projection to Textual Space
vs Training with Noise

In this section, we quantitatively assess the performance
of two state-of-the-art solutions to overcome the modality
gap. In particular, we compared the configuration based on
a memory bank of texts — the one introduced in §3 — with
an alternative solution based on noise injection during the
decoder training.

Training with Noise. Various works [15, 33] proposed
zero-shot image captioning solutions based on noise in-
jection during the training of the text decoder. Through
this strategy, the trained decoders are more effective in un-
derstanding semantic representations, even when those are
not from texts. To implement this strategy in our frame-
work, we trained the textual decoder on the same collec-
tion of captions as for the memory bank-based configu-
ration. We adopted as textual space for the decoder the
one of Talk2DINO [3], which is aligned to DINOv2 [34]
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Model # Patches Backbone Input Weighting B M R C S P

DeCap@592 37 CLIP B16 CLS - 2.0 9.6 21.5 20.5 8.7 75.3
DeCap@592 37 CLIP B16 Patches uniform 0.9 7.0 17.0 10.9 5.8 75.0
DeCap@592 37 CLIP B16 Patches attention 0.8 6.5 15.1 9.4 5.6 74.9

Patch-ioner@518 37 DINOv2 B14 CLS - 1.8 8.7 20.6 20.5 8.7 75.0
Patch-ioner@518 37 DINOv2 B14 Patches uniform 2.5 10.7 23.2 27.9 12.6 78.7
Patch-ioner@518 37 DINOv2 B14 Patches attention 2.4 10.4 22.7 27.6 12.0 78.1

Table 5. Trace Captioning results on COCO test set.

Model # Patches Backbone Input Weighting mAP M B R C S P

DeCap@224 7 CLIP B32 CLS - 0.15 8.40 0.94 15.61 19.38 9.38 73.71
DeCap@224 7 CLIP B32 Patches uniform 0.09 4.44 0.19 11.03 5.39 2.29 72.03
DeCap@224 7 CLIP B32 Patches gaussian 0.09 4.44 0.19 11.06 5.41 2.27 71.90
DeCap@224 7 CLIP B32 Patches attention 0.10 4.54 0.20 11.32 5.70 2.43 71.71

DeCap@224 14 CLIP B16 CLS - 0.14 8.48 0.95 15.70 19.11 9.40 73.94
DeCap@224 14 CLIP B16 Patches uniform 0.12 6.01 0.44 13.07 10.69 5.00 74.07
DeCap@224 14 CLIP B16 Patches gaussian 0.12 5.97 0.45 13.06 10.58 4.89 73.91
DeCap@224 14 CLIP B16 Patches attention 0.13 5.91 0.43 12.95 10.33 4.84 73.73

DeCap@592 37 CLIP B16 CLS - 0.15 8.37 0.92 15.67 18.53 9.26 73.91
DeCap@592 37 CLIP B16 Patches uniform 0.12 5.97 0.45 13.15 10.89 4.87 74.15
DeCap@592 37 CLIP B16 Patches gaussian 0.12 5.93 0.44 13.14 10.74 4.76 73.99
DeCap@592 37 CLIP B16 Patches attention 0.12 5.80 0.42 12.89 10.22 4.66 73.89

DeCap@224 Crop 7 CLIP B32 CLS - 0.17 10.03 1.35 18.20 23.61 10.90 77.09
DeCap@224 Crop 14 CLIP B16 CLS - 0.18 10.33 1.40 18.44 24.56 11.28 77.76

Patch-ioner@518 37 DINOv2 B14 Patches uniform 0.21 10.63 1.36 18.59 31.94 15.03 78.82
Patch-ioner@518 37 DINOv2 B14 Patches gaussian 0.22 10.82 1.43 18.82 32.80 15.48 79.14
Patch-ioner@518 37 DINOv2 B14 Patches attention 0.21 10.31 1.27 18.17 30.58 14.72 78.69

Table 6. Dense Captioning results on VG v1.2 test set.

with registers [18]. Following the setting of [15], we added
Gaussian noise with σ2 = 0.08 to the textual embeddings
while leaving the other parameters unchanged. In the next
paragraphs, we report and compare the results for each
task of the Patch-ioner model that uses the memory bank
(Memory) and the one trained with noise (Noise).

In Table 10, we compare the two modality gap mitiga-
tion strategies across multiple captioning tasks. For Trace
Captioning (Table 10a), the Memory method is slightly
more effective in the semantic metric RefPAC-S, while the
Noise variant achieves marginally better scores in CIDEr,
ROUGE-L, METEOR, and BLEU@4, with a minimal gap
between the two approaches. In Dense Captioning (Ta-
ble 10b), the Memory model consistently outperforms the
Noise model across all metrics. Similarly, for Region-Set
Captioning (Table 10c), both methods achieve strong re-
sults, but the Memory method shows a clearer advantage,
particularly in tasks closer to the patch level. Finally, in Im-
age Captioning (Tables 10d and 10e), the performance gap
between the two architectures narrows, especially on the

Flickr30k test split. In this scenario, the Memory method
performs significantly better when applied to the CLS to-
ken, whereas patch aggregation produces comparable re-
sults. However, the metrics reveal conflicting trends across
different datasets.

Chosen Strategy. Based on the observed results, we se-
lected the projection-based approach (Memory) as the pri-
mary strategy for overcoming the modality gap in our
framework. While the noise injection method (Noise)
yielded competitive performance across multiple tasks, the
Memory method demonstrated superior performance in
dense captioning and region-set captioning, as well as a
clear advantage when applied to the CLS token in image
captioning. Given these trends, and considering the stability
of the projection-based approach across different evaluation
settings, we adopted Memory as the default configuration
for our Patch-ioner.
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Model # Patches Backbone Input Weighting B M R C S P

DeCap@224 7 CLIP B32 CLS - 10.1 19.0 38.0 94.4 26.4 86.9
DeCap@224 7 CLIP B32 Patches uniform 1.1 6.6 17.3 15.8 5.8 71.2
DeCap@224 7 CLIP B32 Patches gaussian 1.1 6.5 17.2 15.3 5.6 71.0
DeCap@224 7 CLIP B32 Patches attention 1.1 6.5 17.3 15.6 5.6 70.8

DeCap@224 14 CLIP B16 CLS - 10.0 19.4 38.3 95.1 26.8 87.4
DeCap@224 14 CLIP B16 Patches uniform 3.1 10.5 23.6 40.8 14.4 78.7
DeCap@224 14 CLIP B16 Patches gaussian 3.1 10.5 23.4 40.1 14.1 78.5
DeCap@224 14 CLIP B16 Patches attention 2.5 9.4 21.4 34.2 12.8 77.3

DeCap@592 37 CLIP B16 CLS - 9.6 18.6 37.5 91.4 25.9 86.7
DeCap@592 37 CLIP B16 Patches uniform 3.5 10.6 24.0 41.6 14.1 78.8
DeCap@592 37 CLIP B16 Patches gaussian 3.5 10.5 23.8 40.6 13.8 78.5
DeCap@592 37 CLIP B16 Patches attention 2.8 9.2 21.4 33.6 12.4 77.1

Patch-ioner@518 37 DINOv2 B14 CLS - 9.1 16.9 35.0 89.4 25.4 85.5
Patch-ioner@518 37 DINOv2 B14 Patches uniform 11.5 19.3 38.8 109.1 29.4 87.5
Patch-ioner@518 37 DINOv2 B14 Patches gaussian 11.6 19.6 39.3 111.6 30.1 87.7
Patch-ioner@518 37 DINOv2 B14 Patches attention 11.0 19.0 38.3 107.0 29.3 87.4

Table 7. Region-Set Captioning results for COCO Entities test set.

Model # Patches Backbone Input Weighting B M R C S P

DeCap@224 7 CLIP B32 CLS - 5.1 12.0 28.6 37.5 14.7 78.2
DeCap@224 7 CLIP B32 Patches uniform 0.5 4.8 14.1 5.9 3.3 65.3
DeCap@224 7 CLIP B32 Patches gaussian 0.5 4.8 14.1 5.9 3.2 65.2
DeCap@224 7 CLIP B32 Patches attention 0.5 5.0 14.6 6.2 3.4 65.2

DeCap@224 14 CLIP B16 CLS - 5.3 12.5 29.1 39.4 15.9 78.8
DeCap@224 14 CLIP B16 Patches uniform 1.0 5.9 15.6 12.4 6.7 70.4
DeCap@224 14 CLIP B16 Patches gaussian 0.9 5.9 15.5 12.6 6.6 70.4
DeCap@224 14 CLIP B16 Patches attention 1.0 5.6 14.6 11.8 6.1 69.9

DeCap@592 37 CLIP B16 CLS - 5.0 12.0 28.5 37.8 14.9 78.1
DeCap@592 37 CLIP B16 Patches uniform 1.0 6.1 16.3 12.9 6.4 70.4
DeCap@592 37 CLIP B16 Patches gaussian 1.0 6.1 16.4 12.9 6.3 70.4
DeCap@592 37 CLIP B16 Patches attention 0.9 5.6 15.0 11.5 5.8 69.8

Patch-ioner@518 37 DINOv2 B14 CLS - 3.8 10.5 26.3 35.7 13.4 76.6
Patch-ioner@518 37 DINOv2 B14 Patches gaussian 5.0 12.1 28.5 43.5 16.6 78.9
Patch-ioner@518 37 DINOv2 B14 Patches uniform 5.1 12.0 28.7 44.1 16.4 79.1
Patch-ioner@518 37 DINOv2 B14 Patches attention 4.8 11.6 27.8 41.9 15.8 78.6

Table 8. Region-Set Captioning results on Flickr30k Entities test set.

8. Dense Vision-Language Backbone

In this section, we explore alternative approaches to
Talk2DINO to obtain language-aligned dense representa-
tion. As outlined in §3, our approach relies on a vision-
language backbone that provides localized dense features.
We experimented with the two best available backbones:

ProxyCLIP [22] and Talk2DINO [3], with Talk2DINO
being the preferred choice for Patch-ioner. Both back-
bones were proposed to address the task of unsupervised
open-vocabulary object segmentation, in which Talk2DINO
emerges as the best-performing model.

ProxyCLIP leverages the strong semantic capabilities
of DINO model families to generate dense CLIP features,
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Model # Patches Backbone Input Weighting B M R C S P

DeCap@224 14 CLIP B16 CLS - 23.89 25.51 50.34 89.64 19.52 91.05
DeCap@224 14 CLIP B16 Patches uniform 9.05 15.76 33.74 41.68 10.72 84.15
DeCap@224 14 CLIP B16 Patches gaussian 8.87 15.51 33.52 40.24 10.44 83.92
DeCap@224 14 CLIP B16 Patches attention 4.81 11.64 25.96 24.47 7.34 80.67

DeCap@592 37 CLIP B16 CLS - 22.43 24.64 49.25 84.57 18.66 90.36
DeCap@592 37 CLIP B16 Patches uniform 9.75 15.79 34.40 42.06 10.63 84.04
DeCap@592 37 CLIP B16 Patches gaussian 9.56 15.57 34.06 40.68 10.30 83.73
DeCap@592 37 CLIP B16 Patches attention 5.50 11.80 26.78 24.46 7.21 80.65

DeCap@224 7 CLIP B32 CLS - 23.46 25.12 50.06 87.40 19.14 90.58

Patch-ioner@518 37 DINOv2 B14 CLS - 22.79 23.09 47.16 83.50 17.50 89.31
Patch-ioner@518 37 DINOv2 B14 Patches central patch 15.68 18.46 40.84 55.53 12.66 84.26
Patch-ioner@518 37 DINOv2 B14 Patches uniform 19.52 21.49 44.88 69.19 15.59 87.36
Patch-ioner@518 37 DINOv2 B14 Patches gaussian 21.17 22.62 46.62 76.79 16.73 88.36
Patch-ioner@518 37 DINOv2 B14 Patches attention 23.64 23.93 48.54 88.46 18.21 90.21

Patch-ioner@518 GT Memory 37 DINOv2 B14 CLS - 23.58 23.54 47.71 85.67 17.86 89.53
Patch-ioner@518 GT Memory 37 DINOv2 B14 Patches attention 25.66 24.77 49.83 93.87 19.09 90.70

Table 9. Image Captioning results on COCO test set.

(a) Trace Captioning (COCO)

Input Weighting B M R C S P

Noise CLS - 2.1 9.4 21.5 20.9 8.1 74.0
Memory CLS - 1.8 8.7 20.6 20.5 8.7 75.0

Noise Patches uniform 3.0 11.5 24.7 29.3 12.3 78.1
Memory Patches uniform 2.5 10.7 23.2 27.9 12.6 78.7

(b) Dense Captioning (Visual Genome v1.2)
Input Weighting mAP M B R C S P

Noise Patches uniform 0.20 10.36 1.24 17.76 26.34 12.63 76.98
Memory Patches uniform 0.21 10.63 1.36 18.59 31.94 15.03 78.82

Noise Patches gaussian 0.21 10.50 1.27 17.93 26.85 12.91 77.11
Memory Patches gaussian 0.22 10.82 1.43 18.82 32.80 15.48 79.14

(c) Region-Set Captioning (COCO Entities)

Input Weighting B M R C S P

Noise Patches uniform 10.5 18.4 37.2 97.5 26.7 85.6
Memory Patches uniform 11.5 19.3 38.8 109.1 29.4 87.5

Noise Patches gaussian 10.6 18.5 37.3 98.1 27.1 85.7
Memory Patches gaussian 11.6 19.6 39.3 111.6 30.1 87.7

(d) Image Captioning (COCO)
Input Weighting B M R C S P

Noise CLS - 20.88 22.29 46.16 74.78 15.96 86.52
Memory CLS - 22.79 23.09 47.16 83.50 17.50 89.31

(e) Image Captioning (Flickr30k)
Input Weighting B M R C S P

Noise CLS - 12.10 15.90 38.00 27.91 9.48 79.86
Memory CLS - 13.32 16.67 39.03 38.12 10.71 83.27

Table 10. Mitigation to Modality Gap. Memory-based Projec-
tion (Memory) vs Noise-trained Decoder (Noise).

which, unlike the original CLIP features, capture local se-
mantic information. This is achieved by passing the image
through a DINO model and utilizing the self-attention map
of the CLS token to create proxy attention for the final CLIP
visual layer.

In contrast, Talk2DINO directly maps CLIP embeddings
to DINOv2 space, thus offering another approach to link-
ing DINO’s locally-rich representations with textual infor-
mation. We tested ProxyCLIP with both DINO B/8 and
DINOv2 B/14 backbones, while Talk2DINO was evaluated
using the DINOv2 B/14 backbone. We trained the textual
decoder on the CLIP B/16 embeddings for ProxyCLIP and
on the Talk2DINO embeddings for the latter.

Results in Table 11 show that for zero-shot captioning
tasks Talk2DINO achieves better performance.

9. Trace Captioning Benchmark Generation

As detailed in §4.1, we construct our Trace Captioning
dataset from the Localized Narratives dataset [38]. This
dataset consists of mouse traces and their corresponding
transcriptions, where annotators describe objects in images
while moving the mouse pointer over them.

The initial dataset samples include timestamped mouse
traces and are composed of multiple sentences that thor-
oughly describe the trace, with the generated descriptions
following the order of the mouse movement. However, our
task does not require strict temporal coherence. Instead, we
aim to generate a single, concise caption that describes the
specific area covered by the localized trace, rather than a
multi-sentence description.

To achieve this, we split the descriptions into individ-
ual sentences and align the traces accordingly. We then re-
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(a) Trace Captioning (COCO)
Backbone Weighting B M R C S P

ProxyCLIP DINOv2 B/14 uniform 1.3 9.8 22.0 16.5 8.6 75.7
ProxyCLIP DINO B/8 uniform 1.3 9.8 22.1 16.7 8.5 75.7
Talk2DINO DINOv2 B/14 uniform 2.5 10.7 23.2 27.9 12.6 78.7

(b) Dense Captioning (Visual Genome v1.2)
Backbone Weighting mAP M B R C S P

ProxyCLIP DINOv2 B/14 uniform 0.21 9.05 0.60 17.16 15.54 8.88 75.98
ProxyCLIP DINO B/8 uniform 0.21 9.09 0.59 17.20 15.69 8.88 76.00
Talk2DINO DINOv2 B/14 uniform 0.21 10.63 1.36 18.59 31.94 15.03 78.82

ProxyCLIP DINOv2 B/14 gaussian 0.21 9.21 0.62 17.34 16.11 9.18 76.17
ProxyCLIP DINO B/8 gaussian 0.21 9.28 0.63 17.44 16.36 9.24 76.23
Talk2DINO DINOv2 B/14 gaussian 0.22 10.82 1.43 18.82 32.80 15.48 79.14

(c) Region-Set Captioning (COCO Entities)
Backbone Weighting B M R C S P

ProxyCLIP DINO B/8 uniform 3.3 12.7 28.9 41.2 15.5 78.4
ProxyCLIP DINOv2 B/14 uniform 3.3 12.7 28.7 40.6 15.4 78.5
Talk2DINO DINOv2 B/14 uniform 11.5 19.3 38.8 109.1 29.4 87.5

ProxyCLIP DINO B/8 gaussian 3.4 13.0 29.2 42.8 16.1 78.8
ProxyCLIP DINOv2 B/14 gaussian 3.4 12.9 29.0 42.0 15.8 78.8
Talk2DINO DINOv2 B/14 gaussian 11.6 19.6 39.3 111.6 30.1 87.7

(d) Image Captioning (COCO)
Backbone Weighting B M R C S P

ProxyCLIP DINOv2 B/14 uniform 6.86 15.44 36.32 27.44 7.68 78.58
ProxyCLIP DINO B/8 uniform 6.99 15.59 36.64 28.70 7.81 78.99
Talk2DINO DINOv2 B/14 uniform 19.52 21.49 44.88 69.19 15.59 87.36

ProxyCLIP DINO B/8 central patch 7.83 15.84 37.38 34.19 7.99 79.21
ProxyCLIP DINOv2 B/14 central patch 8.42 16.19 37.72 36.30 8.39 79.65
Talk2DINO DINOv2 B/14 central patch 15.68 18.46 40.84 55.53 12.66 84.26

ProxyCLIP DINOv2 B/14 gaussian 7.30 15.85 36.97 30.69 8.05 79.35
ProxyCLIP DINO B/8 gaussian 7.32 15.87 37.07 30.99 8.10 79.58
Talk2DINO DINOv2 B/14 gaussian 21.17 22.62 46.62 76.79 16.73 88.36

Table 11. Vision-Language Backbones. Talk2DINO vs Proxy-
CLIP.

fine the traces by removing intermediate periods caused by
transitions between sentences, which often occur when the
annotator moves to a different region of the image. Specifi-
cally, we trim each trace by removing the first and last 15%
of points, eliminating these transitional segments.

Furthermore, we refine the captions by prompting the
Llama3 8B model to rephrase the sentences, removing
vague or subjective phrases such as ”there is,” ”we can see,”
or ”on the left of the image,” and replacing them with con-
cise, objective descriptions that refer specifically to the re-
gion covered by the trace. This rephrasing is crucial to
ensure that each caption adheres to the standard format of
image-captioning datasets and focuses only on the precise
part of the image that the trace corresponds to. The LLM
also helps identify and remove irrelevant sentences (e.g.,
”the image is blurred,” ”the image is edited”), which are
then discarded along with their associated traces from the
final benchmark.

For example, Figure 4 shows the full prompt used to
guide the Llama model in refining and cleaning the descrip-
tions. Figure 5 illustrates how the initial narrative samples

are transformed into final trace captioning samples through
the process of trace splitting and caption rephrasing.

10. More Qualitative Results
Additional qualitative results are shown in Figure 6. Note
that the first rows of Figures 3 and 6 contain also qualitative
results for single patch captioning, for which we do not have
annotated data to report quantitative results.

As can be noticed in Figures 3 and 6, the Region-Set
Captioning task tends to align more closely with image-
level captioning rather than strictly focusing on localized
regions. This is expected since the ground-truth captions in
the COCO Entities dataset originate from the image-level
annotations of COCO, as stated in [7].
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I have image descriptions derived from spoken narratives. These need to be rewritten as
concise, stand-alone captions in the style of the image-caption datasets. Follow these rules:

- Remove unnecessary narrative phrases like "we can see," "there is," "in this image," etc.
- Ensure the caption is standalone and descriptive.
- Use simple, objective language that highlights key elements.
- Keep it concise|just a single phrase.
- Follow the classical style of caption datasets.
- If the description is vague, subjective, or does not describe a concrete visual element
(e.g., "The image is taken indoor," "This image is blurred"), return ‘<INVALID>‘.
- Wrap the output in ‘{}‘ and add nothing else.

### **Examples:**
- **Input:** "We can see a young elephant stands which is near the water in a wooded area."

**Output:** {A young elephant stands near the water in a wooded area.}

- **Input:** "In this image I can see some young children kicking a soccer ball in a field."

**Output:** {A group of young children kicking a soccer ball around a field.}

- **Input:** "In the left of the image, we see a pole that has two green street signs on it."

**Output:** {A pole has two green street signs on it.}

- **Input:** "We can see two surfboards which are stuck in the sand along the seashore."

**Output:** {Two surfboards stuck in the sand along the seashore.}

- **Input:** "This image consists of a man which rides a wakeboard behind a boat."

**Output:** {A man rides a wakeboard behind a boat.}

- **Input:** "In the background, there are a bunch of sticky notes and a pair of scissors."

**Output:** {A bunch of sticky notes and a pair of scissors.}

- **Input:** "It looks like a sepia-toned photograph of a motorcycle underneath the shadow of a
tree."

**Output:** {A sepia-toned photograph of a motorcycle underneath the shadow of a tree.}

- **Input:** "There is a sky"

**Output:** {A sky.}

- **Input:** "She is smiling."

**Output:** {A smiling girl.}

- **Input:** "The image is taken indoor."

**Output:** {<INVALID>}

- **Input:** "This image is edited."

**Output:** {<INVALID>}

- **Input:** "The image is blurred."

**Output:** {<INVALID>}

- **Input:** "I think he is about to jump."

**Output:** {<INVALID>}

Now, rewrite the following captions accordingly. Wrap each in ‘{}‘ and add nothing else:
<INPUT CAPTION>

Figure 4. LLM Prompt for rephrasing trace captions.
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(a) Localized Narrative

In this picture I can observe a dog running on the
land. I can observe water and grass on the
ground. The background is blurred.

(b) Track 1

Original: In this picture I can observe a dog
running on the land.
Processed: A dog runs on the land.

(c) Track 2

Original: I can observe water and grass on the
ground.
Processed: Water and grass on the ground.

(d) Track 3

Original: The background is blurred.
Processed: <INVALID>

In this image there is a person wearing a helmet is
on a vehicle. At the bottom of the image there are
side mirrors. The background of the image is
blurred.

Original: In this image there is a person wearing a
helmet is on a vehicle.
Processed: A person wearing a helmet rides a
vehicle.

Original: At the bottom of the image there are
side mirrors.
Processed: Side mirrors.

Original: The background of the image is blurred.
Processed: <INVALID>

This image is taken outdoors. In this image we can
see the green grass on the ground. In the middle
of the image we can see there are two dogs.

Original: This image is taken outdoors.
Processed: <INVALID>

Original: In this image we can see the green
grass on the ground.
Processed: Green grass on the ground.

Original: In the middle of the image we can see
there are two dogs.
Processed: Two dogs.

Figure 5. Narrative vs. Trace Samples. The first column displays sample images from the localized narrative dataset. The remaining
three columns show the corresponding mouse traces, along with the captions generated by the LLM. Captions marked with <INVALID>

are removed from the dataset.
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PA
T

C
H

DeCap a group of people in a kitchen are cooking food. a table with a cup of coffee and plates of silverware. a small bed is curled up in a cluttered room. a police car is parked on the side of a street.
DeCap P a couple of people that are standing around each other. a bunch of people are sitting at the table together. aa baby is in a bedroom with a white sink and toilet. there are a few street signs in the middle of the neighborhood.

Ours a forest with trees in the background. a cup of coffee with a spoon sitting on a plate. a dog laying on a rug in a living room. a fence that is next to a road.

T
R

A
C

E

GT Clouds and the sun in the sky. A person wearing a cap. A Christmas tree decorated with balls and toys. Few people on a boat.
DeCap a couple of people are sitting on a bench looking at the ocean. a woman at a table putting food in a pot. two people posing with a man and woman having a glass of

wine.
a man on a boat in a body of water with other boats.

DeCap P a couple of people are on a boat by the ocean. a couple of people are in a kitchen making food. there are two people in a kitchen with a red sweater. there are some people in the water by a boat.
Ours a sunset in the distance in the sun a person wearing a hat looking at something in the background the christmas tree is decorated for christmas a boat with many people on it

D
E

N
S

E

GT a white ceiling fan hanging in the kitchen. a plane flying in the sky. two sandwiches on a plate. potted plant on the ledge.
DeCap a kitchen with a large refrigerator , cabinets and stove. a building is flying under a traffic light in the air near a building. a sandwich and a plate of soup on a table. a bird that is perched on a small bird.

DeCap P a kitchen has a lot of fridge and a stove in it. a lot of a building is outside of a yellow car. the couple of food are in the kitchen with a meal. there is a man that is about to take a trick.
DeCap C a bathroom sink with a variety of toilet above the wall. a large airplane is in flight on the airport. a sandwich on a plate containing a sandwich. a a close up of a person standing by a person holding a phone.

Ours a ceiling fan is hanging in the kitchen. there is a plane flying high in the sky. a plate topped with two sandwiches on a table. a potted plant sitting on a ledge.

R
E

G
IO

N
S

E
T

GT Dogs near the edge of water . A soccer player is running while kicking a ball . A brown-haired woman is pushing a baby stroller . The child lays on the hardwood floor .
DeCap a dog and his dogs are wading in the muddy water. a soccer player in the soccer uniform tries to kick the ball. a man and a child walking in the street while holding a stroller. a young boy sitting on the floor in a room.

DeCap P there are many things that are out in the water. there are some people on a baseball field playing a game. there are some cars and a man about to go down the street. the kitchen is very clean and has an open door.
Ours two dogs near one another near water. a soccer player getting ready to kick the ball. a woman pushing a stroller with a child inside. a young child is laying on the floor.

IM
A

G
E

GT Four birds are chasing another bird which has a piece of food in
its mouth.

Brown-haired girl wearing a green tank top, talking on a cell-
phone.

A woman with blond-hair is sitting in a booth with a drink work-
ing on her laptop.

A young girl in a blue shirt is in a bowling alley, and is casting
her ball down a lane.

DeCap a flock of birds flying over the water. a woman talking on a cell phone while on a street. a woman sitting at a table using a laptop. a young girl playing a bowling game on wii.
ZeroCap a gull mating. a man in the back of a pickup truck with blood on the back. a reader’s writing on a laptop on desk-mounted computer. a view hitting the deck pin at the end of the row stretch.
CLOSE a group of birds flying over a body of water. a woman looking at her cell phone while standing in a street. a woman sitting at a table with a laptop and a drink. on a person on a skateboard doing a trick.

Ours a flock of birds flying in the sky. a woman talking on a cell phone in a market. a woman sitting at a cafe using her laptop. a woman playing a bowling game on the bowling.

Figure 6. Qualitative results. We report four predictions of our model and compare baselines from the finer (top) to the coarser (bottom)
task. For trace captioning examples, the trace time is color-coded from start (red) to end (yellow). DeCap = DeCap applied on the whole
image. DeCap P = DeCap applied on the same aggregation of patches used by our method. DeCap C = DeCap applied on cropped box.
ZeroCap = ZeroCap [44] applied to the whole image. CLOSE = CLOSE [15] applied to the whole image. GT = ground-truth caption.

8


	Introduction
	Related Work
	The Patch-ioner Model
	Patch-level Captioning
	Region-level Captioning
	Patch Aggregation

	Experiments
	Trace Captioning
	Dense Captioning
	Region-Set Captioning
	Image Captioning
	Results

	Conclusions
	Additional Results: Weighting Strategies, Input Resolution, Text Collection
	Modality Gap: Projection to Textual Space vs Training with Noise
	Dense Vision-Language Backbone
	Trace Captioning Benchmark Generation
	More Qualitative Results

